Discontinued Product—Support Information Only

This literature was published years prior to the establishment of Agilent Technologies as a company independent from Hewlett-Packard and describes products or services now available through Agilent. It may also refer to products/services no longer supported by Agilent. We regret any inconvenience caused by obsolete information. For the latest information on Agilent's test and measurement products go to:

www.agilent.com/find/products

Or in the US, call Agilent Technologies at 1-800-452-4844 (8am-8pm EST)

The HP 1660E and 1670E-Series Benchtop Logic Analyzers

Technical Data

HP's new family of benchtop logic analyzers includes four new series of products, enabling design engineers to purchase an affordable logic analyzer that meets their exact needs and matches their budget. The units include a VGA resolution color flat panel display to help you find information quickly and the well designed user interface gets you to the answer in less time. Users can use either a mouse or the front panel to easily navigate through the user interface. An optional PC style keyboard is also supported. A compact all-in-one design also helps save space on a crowded lab bench.

The HP 1660ES-Series models come with a built-in, 500-MHz, 2-GSa/s oscilloscope that can be triggered by the logic analyzer. Some of the tougher hardware debug problems can be found only with the digital triggering capabilities of a logic analyzer and can only be solved with the analog resolution of an oscilloscope.

The pattern generator capability in the HP 1660EP-Series allows designers to substitute for missing sub-systems during development.

The HP 1670E-Series help simplify the capture and analysis of complex events with 1M deep memory. Deep memory is a valuable logic analyzer feature for debugging embedded microprocessor systems.

Affordable logic analyzers designed for your exact needs

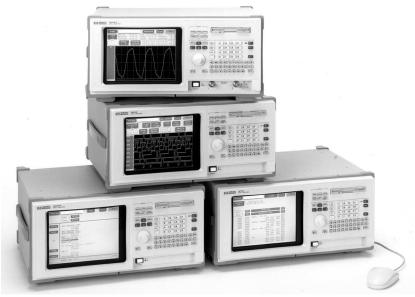


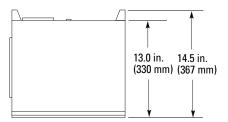
Figure 1. HP's new family of benchtop logic analyzers with color displays

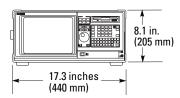
Model Number	HP 1660E	HP 1661E	HP 1662E	HP 1663E	
Channels	136	102	68	34	
Application	General purpose	logic analysis			
Model Number	HP 1660EP	HP 1661EP	HP 1662EP	HP 1663EP	
Channels	136	102	68	34	
Application	Hardware simulation and stimulus-response testing with integrated 32-channel pattern generator				
Model Number	HP 1660ES	HP 1661ES	HP 1662ES	HP 1663ES	
Channels	136	102	68	34	
Application	Parametric and mixed-signal testing with integrated two-channel oscilloscope				
Model Number	HP 1670E	HP 1671E	HP 1672E		
Channels	136	102	68		
Application	Complex debug	ing and troubleshooti	ing with deen memor	rv	

HP 1660E/ES/EP Series Logic Analyzer key Specifications and Characteristics

HP Model Number	1660E/ES/EP	1661E/ES/EP	1662E/ES/EP	1663E/ES/EP	1664A		
State and Timing	136	102	68	34	34		
Channels							
Timing Analysis	Conventional: 250 MHz all channels, 500 MHz half channels						
	Transitional: 12	Transitional: 125 MHz all channels, 250 MHz half channels					
	Glitch: 125 MHz	half channels					
State analysis speed	100 MHz, all ch	100 MHz, all channels 50					
State Clock/Qualifiers	6	6	4	2	2		
Memory Depth	4k per channel, 8k in half-channel modes						
per Channel							
LAN Port	Standard for all E/ES/EP models N/A						

HP 1660EP Series Pattern Generator Key Specifications and Characteristics


HP Model Number		1660EP. 1661EP. 1662EP. 1663EP		
Maximum Clock Speed	200 MHz	100MHz	50 MHz	
Number of Data Channels	16	32	32	
Memory Depth, in vectors	258,048	258,048	258,048	
"IF" Command	No	No	Yes	


HP 1670E-Series Logic Analyzer Key Specifications and Characteristics

HP Model Number	1670E	1671E	1672E
State and Timing Channels	136	102	68
Timing Analysis	Conventional:	125 MHz all channels, 250 MHz	half channels
State Analysis Speed	100 MHz, all channels		
State Clocks/ Qualifiers	4	4	4
Memory Depth per Channel	1M per c	hannel, 2M in timing half-chan	nel mode

HP 1660ES Series Oscilloscope Key Specifications and Characteristics

HP Model Number	1660ES, 1661ES
	1662ES, 1663ES
Channels	2
Maximum Sample	2 GSa/s per channel
Rate	
Bandwidth	dc to 500 MHz
	(dc coupled)
Rise Time	700 ps
Vertical Resolution	8 bits
Memory Depth per	32k samples
Channel	·

Weight = 28.6 lbs. (13kg)

Figure 3. Logic analyzer dimensions and weight

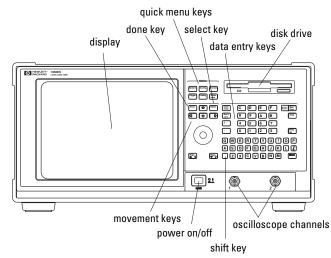
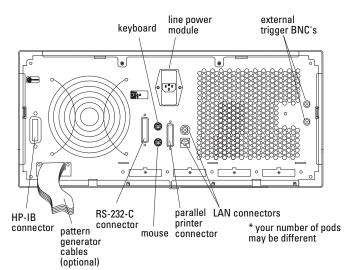



Figure 2. Diagram of logic analyzer's front and rear panels

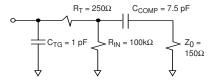
Human Inte	rface	Alternate	The Epson FX80, LX80	Configuration	Logic analyzer and
Front Panel	A knob and keypad make up the front- panel human interface. Keys include control, menu, display naviga-	Printers Supported Hard Copy Output	and MX80 printers with an RS-232 or Centronics interface are supported in the Epson 8-bit graphics mode.	and Data Files	s oscilloscope files that include configura- tion and data informa- tion (if present) are encoded in a binary format. They can be stored to or loaded from the hard disk drive or a flexible disk.
Mayor	tion, and alpha-numeric entry functions.		Screen images can be printed in black and white or color from all menus using the <i>Print</i> field. State or timing listings can be also be printed in full or part (starting from center screen) using the		
Mouse	A DIN mouse is shipped as standard equipment. It provides full instrument control. Knob functionality is replicated by holding down the right button			Recording of Acquisition and Storage Times	Binary format configuration/data files are stored with the time of acquisition and the time of storage. ^[1]
	and moving the mouse left or right. ^[1]	Mass Ctars	Print All selection.	Acquisition	Arming
Keyboard	The logic analyzer can also be operated using	Mass Storag		Initiation	Arming is started by Run, Group Run, or the Port In BNC.
In the state of th	a DIN keyboard. Order the HP Logic Analyzer Keyboard Kit, model number HP E2427B. ^[1]	Operating System	resides in Flash ROM and can be updated from the flexible disk drive or from the internal hard disk	Cross Arming	Analyzer machines and the oscilloscope or pattern generator can cross-arm each other.
Input/Output and Printing		Mass Storage	drive. [1] Supported by an internal hard disk drive and	Output	An output signal is provided at the Port
I/O Ports	All units ship with a Centronics parallel printer port, RS-232, and HP-IB as standard equipment.		by a 1.44 Mbyte, 3.5- inch flexible disk drive. Supports DOS and LIF formats. [1]	PORT IN Signal and Connection	Out BNC. Port In is a standard BNC connection. The input operates at
LAN Interface	An Ethernet LAN inter- face is standard. The LAN interface comes	Screen Image Files	display screen can be stored to disk via the display's <i>Print</i> field in black & white or color TIFF, color PCX, or black & white Encapsulated PostScript TM (EPS) formats.		TTL logic signal levels. Rising edges are valid input signals.
	with both Ethertwist and ThinLan connec- tors. The LAN supports FTP and PC/NFS con- nection protocols. It also works with X11			PORT OUT Signal and Connection	Port Out is a standard BNC connection with TTL logic signal levels. A rising edge is asserted as a valid output.
Program- mability	windows packages. [1] Each instrument is fully programmable from a computer via HP-IB, RS-232 and LAN connections. [1]	ASCII Data Files	State or timing listings can be stored as ASCII files on a disk via the display's <i>Print</i> field. These files are equiva-	Skew Adjustment	Correction factors for nominal skew between displayed timing and oscilloscope signals are built into the oper- ating system.
HP Printer Support	Printers which use the HP Printer Control Language (PCL) and have a parallel Centronics, RS-232 or HP-IB interface are supported: HP DeskJet, LaserJet, QuietJet, PaintJet, and		lent in character width and line length to hard-copy listings printed via the <i>Print All</i> selection.		Additional correction for unit-by-unit variation can be made using the <i>Skew</i> field. An entered skew value affects the next (not the present) acquisition display.

^{1]} Please refer to HP 1664A Product Specifications and Characteristics on page 7.

ThinkJet models

PORT IN Arms Logic Analyzer [2]	15 ns typical delay from signal input to a don't care logic analyzer trigger.
PORT IN Arms Oscilloscope	40 ns typical delay from signal input to an immediate oscilloscope trigger.
Logic Analyzer Arms PORT OUT [2]	120 ns typical delay from logic analyzer trigger to signal output.
Oscilloscope Arms PORT OUT	60 ns typical delay from oscilloscope trigger to signal output.
Operating E	nvironment
Power	115 Vac or 230 Vac, -22% to +10%, single phase, 48-66 Hz, 320 VA max
Temperature	Instrument, 0° to 50° C (+32° to 122° F). Disk media, 10° to 40° C (+50° to 104°F). Probes and cables, 0° to 65° C (+32° to 149° F)
Humidity	Instrument, up to 95%, relative humidity at +40° C (+140° F). Disk media and hard drive, 8% to 85% relative humidity.
Altitude	To 3,048 m (10,000 ft) [1]
Vibration: Operating	Random vibrations 5–500 Hz, 10 minute per axis, ~ 0.3 g (rms).
Vibration: Non Operating	Random vibrations 5–500 Hz,10 minutes per axis,~ 2.41 g (rms); and swept sine resonant search, 5–500 Hz, 0.75 g (0-peak), 5 minute resonant dwell @ 4 resonances per axis.

^[1] Please refer to HP 1664A Product Specifications and Characteristics on page 7.


Physical Factors Safety IEC 348/ HD 401, UL 1244, and CSA Standard C22.2 No. 231 (series M-89)

EMC CISPR 11:1990/EN 55011 (1991): Group 1 Class A

IEC 801-2:1991/EN 50082-1 (1992): 4kV CD, 8 kV AD

IEC 801-3:1984/EN 50082-1 (1992): 3 V/m IEC 801-4:1988/EN 50082-1 (1992): 1kV

High Frequency Model for Probe Inputs

Figure 4

Minimum Input Voltage Swing	500 mV peak-to-peak
Minimum Input Overdrive	250 mV or 30% of input amplitude, whichever is greater
Threshold Range	-6.0 V to +6.0 V in 50-mV increments
Threshold Setting	Threshold levels may be defined for pods (17-channel groups) on an individual basis
Threshold Accuracy*	± (100 mV +3% of threshold setting)
Input Dynamic Range	± 10 V about the threshold
Maximum Input Voltage	± 40 V peak

+5 V Accessory Current	1/3 amp maximum per pod
Channel Assignment	Each group of 34 channels (a pod pair) can be assigned to Machine 1, Machine 2 or remain unassigned. The HP 1663E/ES/EP and the HP 1664A do not have a Machine 2.

State Analysis

Maximum State Speed*	100 MHz ^[1] all models
Memory	

Depth per Channel HP 1660E/E

HP 1660E/ES/	4k samples std.
EP Series	Time tags on:
	2k samples

HP 1670E 1 **Series** T

1M samples standard Time Tags On: 500k samples Compare Mode On: 250k samples Compare Mode and Time Tags On: 120k samples

State Clocks

Clock edges can be ORed together and operate in single phase, two-phase demultiplexing, or two-phase mixed mode. Clock edge is selectable as positive, negative, or both edges for each clock.

State Clock Qualifier

The high or low voltage level of up to 4 of the 6 clocks can be ANDed or ORed with the clock specification.

Setup/Hold* [4] one clock,

one clock, one edge 3.5/0 ns to 0/3.5 ns (in 0.5 ns increments)

one clock, both edges 4.0/0 ns to 0/4.0 ns (in 0.5 ns increments)

multi-clock, multi-edge 4.5/0 ns to 0/4.5 ns (in 0.5 ns increments)

^[2] Time may vary depending upon the mode of logic analyzer operation.

^{*} Warranted specification.

^[3] Full channel /half channel modes

Minimum	3.5 ns	Time Covered	Sample period \times	Time Interv	al Accuracy
State Clock Pulse Width*	[4]	by Data [3] Transitional	memory depth (HP 1660E/ES/EP Series	Sample Period	± 0.01%
Minimum Master to Master Clock Time* [4	10.0 ns ₁	_	only) Sample is stored in acquisition memory only when the data changes. A time tag	Accuracy Channel-to- Channel Skev	2 ns typical, v3 ns maximum
Minimum Slave to Slave Clock Time [4]	10.0 ns		stored with each sample allows recon- struction of waveform display. Time covered by a full memory acqui-	Time Interval Accuracy	± (Sample Period Accuracy + channel- to-channel skew + 0.01% of time interval
Minimum Master to Slave Clock Time [4]	0.0 ns		sition varies with the number of pattern changes in the data.	Maximum Delay After	Sample Period 2-8 ns : 8.389 ms
Minimum Slave to Mast	4.0 ns er	Time Covered by Data ^[3]	16.3 µs minimum, 9.7 hrs./6.5 hrs. maximum	Triggering	Sample Period > 8 ns: 1,048,575 × sample period
Clock Time [4]	4.0/0 = a (five d)	Maximum	34.4 s	Trigger Spe	cifications
Clock Qualifiers Setup/Hold [4]	4.0/0 ns (fixed)	Time Between Transitions		Trigger Macros	Trigger setups can be selected from a cate-
State Tagging ^[5]	Counts the number of qualified states between each stored state. Measurement can be shown relative to the previous state or relative to trigger. Max. count is 4.29×10^9 .	Number of Captured Transitions [3]	1023-2047/682-4094 Depending on input signals	m sh	gorized list of trigger macros. Each macro is shown in graphical form and has a written
		Glitch Capture Mode	(HP 1660E/ES/EP Series only.) Data sample and glitch information is stored every sample		description. Macros can be chained togeth- er to create a custom trigger sequence.
Time Tagging ^[5]	Measures the time between stored states, relative to either the previous state or to the trigger. Max. time	Maximum Timing Speed Sample	period. 125 MHz 8 ns minimum, 8.38 ms	Pattern Recognizers	Each recognizer is the AND combination of bit (0,1, or X) patterns in each label. Ten pattern recognizers are available.
	between states is 34.4 sec. Min. time between states is 8 ns.	Period Minimum Glitch Width*	maximum 3.5 ns	Minimum Pattern and Range	>125 MHz timing modes: 13 ns + channel-to- channel skew
Time Tag Resolution	8 ns or 0.1% (whichever is greater)	Maximum Glitch Width	Sample Period – 1 ns	Recognizer Pulse Width	≤125 MHz timing modes: 1.01 x (1 sample period +1 ns + channel-to-
Timing Ana	lysis	Memory	2048 samples		channel skew)
Conventional Timing	Data stored at selected sample rate across all	Depth per Channel			
HP 1660 Serie Sample	4 ns/2 ns minimum,	Time Covered by Data	Sample Period × 2048: 16.3 µs minimum, 17.1 sec maximum		f Channel Modes $nput signal VH=-0.9V, VL=-1.7V, \\ s, and threshold=-1.3V$
Period [3] HP 1670 Serie Sample Period [3]	8.38 ms maximum s 8 ns/4 ns minimum, 41 ms/10 ms maximum			is available in the no speed penalty when time or sta	nging (Count Time or Count State) be full-channel state mode. There is r for tag use. Memory is halved te tags are used unless a pod pair p) remains unassigned in the enu.

^{*} Warranted specification.

Range Recognizers	Recognize data which is numerically between or on two specified pat- terns (ANDed combina-	Maximum Sequencer Speed	125 MHz	Trigger	Displayed as a vertical dashed line in the timing waveform, state waveform and X-Y
	tion of zeros and/or ones). Two range recognizers are available.	State Sequence Levels	12		chart displays and as line 0 in the state listing and state compare dis- plays.
Range Width	32 channels	Timing	10	Activity	Provided in the
Edge/Glitch Recognizers	Trigger on glitch or edge on any channel.	Sequence Levels		Indicators	Configuration, State Format, and Timing
	Edge can be specified as rising, falling or either.	Timers	Timers may be Started, Paused, or Continued at entry into any sequence level after the first.		Format menus for moni- toring device-under- test activity while set- ting up the analyzer.
Edge/Glitch Recognizers	2 (in timing mode only)	Timers	2	Labels	Channels may be grouped together and
Edge/Glitch Recovery Time	pe/Glitch Sample Period 2-8 ns:		400 ns to 500 seconds	name called a <i>label.</i> I	given a 6-character name called a <i>label</i> . Up to 126 labels in each
	Sample Period > 8 ns: 20 ns + sample period	Timer Resolution	16 ns or 0.1% whichever is greater		analyzer may be assigned with up to 32
Qualifier	A user-specified term that can be any state, no state, any recognizer, (pattern, ranges or	Timer Accuracy	± 32 ns or ± 0.1%, whichever is greater		channels per label. Trigger terms may be given an 8-character name.
	edge/glitch), any timer, or the logical combina-	Timer Recovery Tim	70 ns e	Measurem	ent Functions
	or the logical complina-				
	tion (NOT, AND, NAND, OR, NOR, XOR, NXOR) of	•	n, Measurement y Functions	Markers	Two markers (x and o) are shown as dashed lines in the display
Branching	tion (NOT, AND, NAND, OR, NOR, XOR, NXOR) of the recognizers and timers.	•	y Functions Starts acquisition of data in specified trace	Time	are shown as dashed lines in the display. The x and o markers
Branching	tion (NOT, AND, NAND, OR, NOR, XOR, NXOR) of the recognizers and timers. Each sequence level has a branching qualifi-	and Displa Run	y Functions Starts acquisition of data in specified trace mode.		are shown as dashed lines in the display. The x and o markers measure the time interval between events
Branching	tion (NOT, AND, NAND, OR, NOR, XOR, NXOR) of the recognizers and timers. Each sequence level has a branching qualifier. When satisfied, the	and Displa	y Functions Starts acquisition of data in specified trace mode. In single trace mode or	Time	are shown as dashed lines in the display. The x and o markers measure the time
Branching	tion (NOT, AND, NAND, OR, NOR, XOR, NXOR) of the recognizers and timers. Each sequence level has a branching qualifi-	and Displa Run	y Functions Starts acquisition of data in specified trace mode. In single trace mode or the first run of a repetitive acquisition, stop halts acquisition and	Time	are shown as dashed lines in the display. The x and o markers measure the time interval between events occurring on one or more waveforms or states (available in state
Branching Occurrence Counters	tion (NOT, AND, NAND, OR, NOR, XOR, NXOR) of the recognizers and timers. Each sequence level has a branching qualifier. When satisfied, the analyzer will branch to the sequence level specified. Qualifiers may be specified to occur up to 1,048,575 times before advancing to the next level. Each sequence	and Displa Run	Starts acquisition of data in specified trace mode. In single trace mode or the first run of a repetitive acquisition, stop	Time	are shown as dashed lines in the display. The x and o markers measure the time interval between events occurring on one or
Occurrence	tion (NOT, AND, NAND, OR, NOR, XOR, NXOR) of the recognizers and timers. Each sequence level has a branching qualifier. When satisfied, the analyzer will branch to the sequence level specified. Qualifiers may be specified to occur up to 1,048,575 times before advancing to the next	and Displa Run	Starts acquisition of data in specified trace mode. In single trace mode or the first run of a repetitive acquisition, stop halts acquisition and displays the current acquisition data. For subsequent runs in repetitive mode, stop halts acquisition of data and does not change current display. Single mode acquires data once per trace	Time Intervals	are shown as dashed lines in the display. The x and o markers measure the time interval between events occurring on one or more waveforms or states (available in state when time tagging is on). The x and o markers measure the number of tagged states between any two states (state only). The x or o marker can be used to locate the nth occurrence of a
Occurrence	tion (NOT, AND, NAND, OR, NOR, XOR, NXOR) of the recognizers and timers. Each sequence level has a branching qualifier. When satisfied, the analyzer will branch to the sequence level specified. Qualifiers may be specified to occur up to 1,048,575 times before advancing to the next level. Each sequence level has its own counter. The maximum occurrence count is	Run Stop	Starts acquisition of data in specified trace mode. In single trace mode or the first run of a repetitive acquisition, stop halts acquisition and displays the current acquisition data. For subsequent runs in repetitive mode, stop halts acquisition of data and does not change current display. Single mode acquires	Time Intervals Delta States	are shown as dashed lines in the display. The x and o markers measure the time interval between events occurring on one or more waveforms or states (available in state when time tagging is on). The x and o markers measure the number of tagged states between any two states (state only). The x or o marker can be used to locate the

Statistics	x to o marker statistics	Data Display			label. When data display
	are calculated for repetitive acquisitions. Patterns must be specified for both markers, and statistics are kept only when both patterns can be found in an acquisition. Statistics are minimum x to o time, maximum x to o time, average x to o time, and ratio of valid runs to total runs.	Display Modes	State listing, state waveforms, state chart, state compare listing, compare difference listing, timing waveforms, timing listing, interleaved time-correlated listing of two state analyzers (time tags on), and time-correlated state listing with timing waveforms on the same display.	Range Symbols Symbol Utility	is "Symbol", mnemonic is displayed where the bit pattern occurs. User can define a mnemonic covering a range of values. Symbolic information extracted from popular object module formats can also be used.
Compare Mode Functions	Performs post-process- ing bit-by-bit comparison of the acquired state data and	State X-Y Chart Display	Plots value of a speci- fied label (on y-axis) versus states or another label (on x-axis). Both axes can be scaled.	Number of Symbols System Performance Analysis	SPA includes state histogram, state overview and time inter-
Compare image data. Compare Image Image State acquisition into the compare image buffer. Allows editing of any bit in the compare image to a 1, X or 0.	Created by copying a state acquisition into	State Waveform Display	Displays state acquisitions in waveform format.		val measurements to aid in the software opti- mization process. These tools provide a statisti-
	Timing Listing Display	Displays timing acquisition in listing format.		cal overview of your synchronous design.	
Compare Image Boundaries	Each channel (column) in the compare image can be enabled or disabled via bit masks in the compare image. Upper and lower ranges of states (rows) in the compare image can be specified. Any data bits that do not fall within the enabled channels and the specified range are not compared.	Timing Waveform Display Accumulate Overlay Mode	Waveform display is not erased between successive acquisitions. Multiple channels can be displayed on one waveform display line. When waveform size is set to large, the value represented by each	The HP 1664A Specifications and Characteristics The HP 1664A is a low-cost version of the HP 1660E/ES/EP-series logic analyzer family. The HP 1664A has some specifications and characteristics that are different from the HP 1660E/ES/EP-series logic analyzers. The HP 1664A: Supports a maximum of 50 MHz state acquisition Weight 26 pounds (11.8 kg) Altitude To 15,000 ft (4,752 m) Boots from the floppy disk drive—it does not have flash ROM It cannot be upgraded to include an oscilloscope or pattern generator	
Stop Measurement	Repetitive acquisitions may be halted when the comparison between the current state acquisition and the current compare image is equal or not equal.	Displayed Waveforms	waveform is displayed inside the waveform in the selected base. 24 lines maximum on one screen. Up to 96 lines may be specified and scrolled through.		
Compare Mode Displays	Reference Listing display shows the compare image and bit masks; difference listing display highlights differences between the current state	Bases Symbols	Binary, octal, decimal, hexadecimal, ASCII (display only), user- defined symbols, two's complement.	 The mouse and keyboard connectors are HP HIL standard For the optional keyboard order HP F2427A 	
	acquisition and the compare image.	Pattern Symbols	User can define a mnemonic for the spe- cific bit pattern of a		

HP 1660ES-Series Oscilloscope Specifications and Characteristics

General Inf	ormation
Model Numbers	HP 1660ES, 1661ES, 1662ES, 1663ES
Number of Channels	2
Maximum Sample Rate	2 GSa/s per channel
Bandwidth [6] [10]	dc to 500 MHz (real time, dc coupled)
Rise Time	700 ps
Vertical Resolution	8 bits full scale
Memory Depti	132k samples
Oscilloscop	e Probing
Input Coupling	g 1 MΩ: ac,dc 50 Ω: dc only
Input R [10]	1MΩ ± 1% 50Ω ± 1%
Input C	~ 7pF
Probes Included	Two HP 1160A probes; 10:1, 10 M Ω , 9 pF 1.5 meters
Vertical (at E	BNC)
Maximum Safe Input Voltage	1 MΩ : ±250 V 50 Ω : 5 V rms
Vertical Sensitivity Range (1:1 Probe)	16 mV full scale to 40 V full scale
Probe Factors	Any integer ratio from 1:1 to 1000:1
Vertical (dc) Gain Accuracy ^[8]	± 1.25% of full scale
dc Offset Range (1:1 probe)	± 2V to ± 250V (depending on the vertical sensitivity)
dc Offset Accuracy [10]	± [1.0% of channel offset + 2.0% of full scale]
Voltage Measurement Accuracy ^[10]	± [1.25% of full scale t + offset accuracy + 0.016 V/div]
Channel-to- Channel Isolation	dc to 50 MHz – 40 dB 50 MHz to 500 MHz – 30 dB

Horizontal	
Time Base Range	0.5 ns/div to 5 s/div
Time Interval Measurement Accuracy [9] [10]	\pm [(0.005% of Δ t) + (2×10 - 6 × delay setting) + 150 ps]
Oscilloscop	e Triggering
Trigger Level Range	Bounded within chan- nel display window
Trigger Sensitivity ^[10]	dc to 50 MHz: 0.063 × Full Scale 50 MHz to 500 MHz: 0.125 × Full Scale
Trigger Modes	3
Immediate	Triggers immediately after arming condition is met. (Arming condition is Run, Group Run, cross arming signal, or Port In BNC signal).
Edge	Triggers on rising or falling edge from channel 1 or 2.
Pattern	Triggers on entering or exiting logical pattern specified across channels 1 or 2. Each channel can be specified as high (H), low (L), or don't care (X) with respect to the level settings in the edge trigger menu. Patterns must be >1.75 ns in duration to be recognized.
Time-Qualified Pattern	Triggers on the exiting edge of a pattern which meets the user-specified duration criterion. Greater than, less than, or within range duration criterion can be used. Duration range is 20 ns to 160 ns. Recovery time after valid patterns with invalid duration is

with invalid duration is

<12 ns.

Events Delay	Triggers on the nth edge or pattern as specified by the user. Time-qualification is applied only to the 1st of n patterns.
Auto-Trigger	Self-triggers if no trigger condition is found ~ 50 ms after arming.
Measureme	ent Functions
Time Markers	Two markers (x and o) measure time intervals manually, or automatically with statistics.
Voltage Markers	Two markers (a and b) measure voltage and voltage differences.
Automatic Measurements	Period, frequency, s rise time, fall time, +width, –width, peak-to- peak voltage, over-

shoot, and undershoot.

- [6] Upper bandwidth reduces by 2.5 MHz for every degree C above 35°C.
- [7] Rise time calculated as $t_r = \frac{0.35}{\text{bandwidth}}$
- [8] Vertical gain accuracy decreases 0.08% per degree C from software calibration temperature.
- [9] Specification applies at the maximum sampling rate. At lower rates, replace 150 ps in the formula with (0.15 × sample interval) where sample interval is defined as 1/sample rate.
- [10] Specifications (valid within \pm 10°C of auto-calibration temperature)

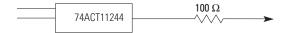
HP 1660EP-Series Pattern Generator Characteristics

Maximum memory depth	258,048 vectors
Number of output channels at 100 MHz to 200 MHz clock	16
Number of output channels at ≤100 MHz clock	32
Maximum number of "IF Condition" blocks at ≤50 MHz clock	1
Maximum number of different macros	100
Maximum number of lines in a macro	1024
Maximum number of parameters in a macro	10
Maximum number of macro invocations	1,000
Maximum loop count in a repeat loop	20,000
Maximum number of repeat loop invocations	1,000
Maximum number of Wait event patterns	4
Number of input lines to define a wait pattern	3
Maximum width of a label	32 bits
Maximum number of labels	126

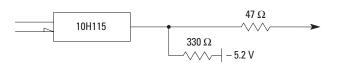
Lead Set Characteristics

HP 10474A 8-channel probe lead set	Provides most cost effective lead set for the HP 1660EP-series clock and data pods. Grabbers are not included.
HP 10347A 8-channel probe lead set	Provides 50 Ω coaxial lead set for unterminated signals, required for HP 10465A ECL Data Pod (unterminated). Grabbers are not included.

Data Pod Characteristics


HP 10461A TTL DATA POD

Output type	10H125 with 100 Ω series
Maximum clock	200 MHz
Skew (note 1)	typical < 2 ns; worst case = 4 ns
Recommended lead set	HP 10474A


HP 10462A 3-STATE TTL/CMOS DATA POD

3-state enable negative	ve true, 100 K Ω to GND, enabled on no connect
o state chapte hogati	
Maximum clock 100 MI	-lz
Skew (note 1) typical	< 4 ns; worst case = 12 ns
Recommended lead set HP 104	74A

HP 10464A ECL DATA POD (TERMINATED)

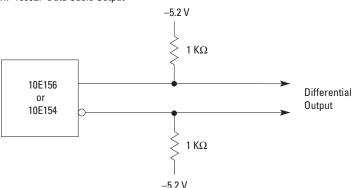
Output type	10H115 with 330 Ω pulldown, 47 Ω series	
Maximum clock	200 MHz	
Skew (note 1)	typical < 1 ns; worst case = 2 ns	
Recommended lead set	HP 10474A	

HP 10465A ECL DATA POD (UNTERMINATED)

Output type	10H115 (no termination)
Maximum clock	200 MHz
Skew (note 1)	typical < 1 ns; worst case = 2 ns
Recommended lead set	HP 10347A

HP 10466A 3-STATE TTL/3.3 VOLT DATA POD

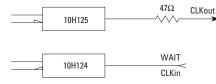
Output type	74LVT244 with 100 Ω series; 10H125 on non 3-state channel 7 (note 2)
3-state enable	negative true, 100 K Ω to GND, enabled on no connect
Maximum clock	200 MHz
Skew (note 1)	typical < 3 ns; worst case = 7 ns
Recommended lead set	HP 10474A


Note 1: Typical skew measurements made at pod connector with approximately 10 pF/50 K Ω load to GND; worst case skew numbers are a calculation of worst case conditions through circuits.

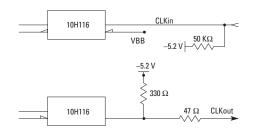
Note 2: Channel 7 on the 3-state pods has been brought out in parallel as a non 3-state signal. By looping this output back into the 3-state enable line, the channel can be used as a 3-state enable.

Data Cable Characteristics Without a Data Pod

The HP 1660EP data cables without a data pod provide an ECL terminated (1 K Ω to -5.2V) differential signal (from a type 10E156 or 10E154 driver). These are usable when received by a differential receiver, preferably with a 100 Ω termination across the lines. These signals should not be used single ended due to the slow fall time and shifted voltage threshold (they are not ECL compatible).


HP 1660EP Data Cable Output

Clock Pod Characteristics


10460A TTL CLOCK POD

Clock output type	10H125 with 47 Ω series; true & inverted
Clock output rate	100 MHz maximum
Clock out delay	11 ns maximum in 9 steps
Clock input type	TTL - 10H124
Clock input rate	dc to 100 MHz
Pattern input type	TTL – 10H124 (no connect is logic 1)
Clock-in to clock-out	approximately 30 ns
Pattern-in to recognition	approx. 15 ns + 1 clk period
Recommended lead set	HP 10474A

10463A ECL CLOCK POD

Clock output type	10H116 differential unterminated; and differential with 330 Ω to –5.2V and 47 Ω series
Clock output rate	200 MHz maximum
Clock out delay	11 ns maximum in 9 steps
Clock input type	ECL – 10H116 with 50 KΩ to –5.2v
Clock input rate	dc to 200 MHz
Pattern input type	ECL-10H116 with 50 K Ω (no connect is logic 0)
Clock-in to clock-out	approximately 30 ns
Pattern-in to recognition	approx. 15 ns + 1 clk period
Recommended lead set	HP 10474A

Probing Alternatives for the HP 1660E/ES/EP and 1670E-Series Logic Analyzers

Probing the device under test is both one of the potentially most difficult and certainly one of the most important tasks in debugging a digital design. That is why HP provides a wider variety of probing solutions than anyone else in the industry—each with a different set of advantages particular to a given situation. We like to think of it as helping you get your signals off to a great start.

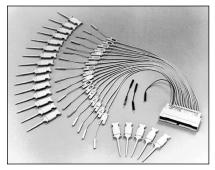


Figure 5. General-purpose lead sets

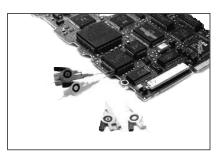


Figure 6. Ultra-fine pitch surface mount device clips

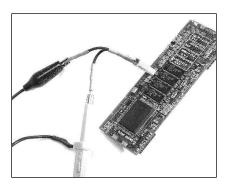


Figure 7. HP Wedge probe adapters for QFP package

Probing Alternative	Advantages	Limitations
General Purpose Lead Sets and Surface Mount Grabbers	Most flexible method. Works in conjunction with SMD clips and Wedge adapters listed below. Included with logic analyzer purchase.	Can be cumbersome when connecting a large number of channels
Ultra-Fine Pitch Surface Mount Device Clips	Smallest IC clips in the industry to date (down to 0.5 mm). Works with both logic analyzer and scope probing systems.	Same as above plus small incremental cost
HP Wedge probe adapter for QFP Packages	Compressible dual conductors between adjacent IC legs make 3-8 adjacent signal leads available to logic analyzer and scope probing systems.	Same as above plus small incremental cost
Elastomeric and Locator Base Solutions for Generic QFP Packages	Provides access to all signal leads for generic QFP packages (including custom ICs). Uses combination of one probe adapter and four flexible adapters, plus general-purpose lead sets.	Requires minimal keep out area. Moderate to significant incremental cost.
Direct Connection to Device Under Test via Built-In Connectors	Very reliable and convenient probing system when frequent probing connections are required (mfg. or field test for example). Connectors can be located at optimal position in the device under test. Can work in conjunction with HP provided inverse assemblers.	Requires advance planning to integrate into design process. Moderate (normal density) to significant (high density) incremental cost.
HP Analysis Probes for Specific Processors and Buses	Support for over 200 different processors and buses. Includes reliable logic analyzer probe pod connectors, logic analyzer configuration files and device specific inverse assemblers.	Requires moderate clearance around processor or bus. Moderate to significant extra cost depending on specific processor or bus.

HP Wedge Probe Adapter

IC leg spacing	Number of signals	Number of Wedges in pack	HP model number
0.5 mm	3	1	HP E2613A
0.5 mm	3	2	HP E2613B
0.5 mm	8	1	HP E2614A
0.65 mm	3	1	HP E2615A
0.65 mm	3	2	HP E2615B
0.65 mm	8	1	HP E2616A

Probing Solutions

Package type	Pin Pitch	Elastomeric solutions	Locator base solutions
304-pin PQFP/CQFP	0.5 mm		HP E5331A probe adapter HP E5333A flexible adapter
240-pin PQFP/CQFP	0.5 mm	HP E5363A probe adapter HP E5371A 1/4-flexible adapter	HP E5315A probe adapter HP E5316A flexible adapter HP E5330A rigid adapter
208-pin PQFP/CQFP	0.5 mm	HP E5374A probe adapter HP E5371A 1/4-flexible adapter	HP E5318A probe adapter HP E5316A flexible adapter HP E5330A rigid adapter
184-pin PQFP/CQFP	0.5 mm		HP E5343A probe adapter HP E5316A flexible adapter HP E5330A rigid adapter
176-pin PQFP	0.5 mm	HP E5348A probe adapter HP E5349A 1/4-flexible adapter	
160-pin QFP	0.5 mm	HP E5377A probe adapter HP E5349A 1/4-flexible adapter	
160-pin PQFP/CQFP	0.65 mm	HP E5373A probe adapter HP E5349A 1/4-flexible adapter	HP E5319A probe adapter HP E5316A flexible adapter HP E5330A rigid adapter
144-pin PQFP/CQFP	0.65 mm	HP E5361A probe adapter HP E5340A 1/4-flexible adapter	
144-pin TQFP	0.5 mm	HP E5336A probe adapter HP E5340A 1/4 flexible adapter	

Figure 8. Elastomeric probing solution

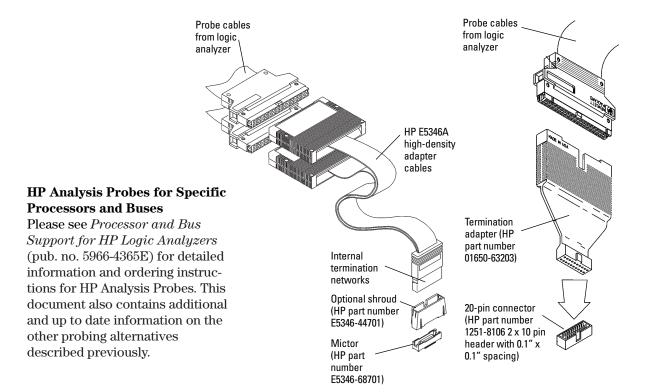


Figure 9. High density direct connection solution

Figure 10. Normal density direct connection solution

Accessories for the HP 1660ES Series Logic Analyzers

Oscilloscope Probes

HP 1160 Family of Miniature Passive Probes

The HP 1160 family of miniature probes was developed as a result of intensive market research on probing. We developed a probe with a browser that won't slip off the test point being probed and short to some adjacent point. The browser uses a crown point that digs into solder, and won't slip. These probes include a variety of ground leads and 50 mil SMD clips for attaching to different grounding points. Each HP 1660ES series logic analyzer ships with the HP 1160 family passive probes.

Each HP 1160 family probe includes:

- 1 probe assembly
- 1 general-purpose retractable hook tip
- 1 browser
- 2 barrel insulators
- 4 spring grounds
- 1 alligator ground lead
- 1 socketed ground lead
- 1 dual lead adapter
- •2 SMD grabbers
- 1 spare browser pogo pin
- 1 spare probe tip
- 1 screwdriver
- 1 users' reference
- •3-year warranty

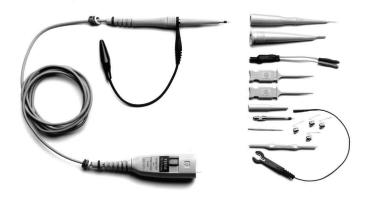


Figure 11. HP 1160 probes and accessories

Figure 12. HP 1182A standard testmobile

Figure 13. HP 1184A deluxe testmobile

HP 1660E/ES/EP Series Ordering Information

HP 1660E/ES/EP and 1670E Series Benchtop Logic Analyzers

HP 1660E	136 Channel Color Logic Analyzer
HP 1661E	102 Channel Color Logic Analyzer
HP 1662E	68 Channel Color Logic Analyzer
HP 1663E	34 Channel Color Logic Analyzer
HP 1660ES	136 Channel Color Logic Analyzer with 2 channel, 500 MHz oscilloscope
HP 1661ES	102 Channel Color Logic Analyzer with 2 channel, 500 MHz oscilloscope
HP 1662ES	68 Channel Color Logic Analyzer with 2 channel, 500 MHz oscilloscope
HP 1663ES	34 Channel Color Logic Analyzer with 2 channel, 500 MHz oscilloscope
HP 1660EP	136 Channel Color Logic Analyzer with 32 channel, 100 Mvectors/sec pattern generator
HP 1661EP	102 Channel Color Logic Analyzer with 32 channel, 100 Mvectors/sec pattern generator
HP 1662EP	68 Channel Color Logic Analyzer with 32 channel, 100 Mvectors/sec pattern generator
HP 1663EP	34 Channel Color Logic Analyzer with 32 channel, 100 Mvectors/sec pattern generator
HP 1670E	136 Channel Color Logic Analyzer with 1M deep acquisition memory
HP 1671E	102 Channel Color Logic Analyzer with 1M deep acquisition memory
HP 1672E	68 Channel Color Logic Analyzer with 1M deep acquisition memory
HP 1664A	34 Channel Monochrome Logic Analyzer

HP 1660E/ES/EP Series and HP 1670E Series Product Options

Opt OB1	Additional User Manual
Opt OB3	Add Service Manual
Opt OBF	Add Programming Manual
Opt ICM	Rack Mount Kit
Opt IBP	MilStd 45662 Calibration
Opt ABJ	Japanese localization of user manual
Opt UK9	Front Panel Cover
Opt W30	3-year extended repair service
Opt W50	5-year extended repair service

HP 1660EP Series Product Options for the Pattern Generator

At least one clock pod and lead set must be ordered for the pattern generator of the HP 1660EP Series. Also, order a data pod for every eight output channels used. There is a total of one clock pod and four data pods on each HP 1660EP series pattern generator.

011	TTL Clock Pod and Lead Set
012	Tri-State TTL/3.3V Data Pod and Lead Set
013	Tri-State TTL/CMOS Data Pod and Lead Set
014	TTL Data Pod and Lead Set
021	ECL Clock Pod and Lead Set
022	ECL (terminated) Data Pod and Lead Set
023	ECL (unterminated) Data Pod and Lead Set

HP 1660E/ES/EP Series Ordering Information (Cont.)

Probing Alternatives for HP Benchtop Logic Analyzers

HP 10467-68701	0.5 mm SMD clips (Qty 4)
HP E2613A	HP Wedge, 0.5mm, 3 signal (Qty1)
HP E2613B	HP Wedge, 0.5mm, 3 signal (Qty 2)
HP E2614A	HP Wedge, 0.5mm, 8 signal (Qty 1)
HP E2615A	HP Wedge, 0.65mm, 3 signal (Qty1)
HP E2615B	HP Wedge, 0.65mm, 3 signal (Qty 2)
HP E2616A	HP Wedge, 0.65mm, 8 signal (Qty. 1)
HP E5346A	High Density Termination Adapter
HP E5346-44701	Shroud for High Density T.A.
HP E5346-68701	Mictor High Density Connector (Qty 5)
HP 01650-63203	Normal Density Termination Adapter
HP 1251-8106	Normal Density 20-pin Connector

Optional Oscilloscope Probes for HP 1660ES Series Logic Analyzers

HP 1145A	2 Channel, 750 MHz Active Probes
HP 1142A	External Power Supply for HP 1145

Testmobiles for HP Benchtop Logic Analyzers

HP 1182A	Standard Testmobile
HP 1184A	Deluxe Testmobile

Accessories for HP Benchtop Logic Analyzers

HP E2427B	DIN (PC-Style) Keyboard
HP E2427A	HIL Keyboard (HP 1664A only)
HP 1540-1066	Soft Carrying Case
HP 5062-7379	Rack Mount Kit (same as option ICM)

HP 1660E Series Post Purchase Upgrades

The following two upgrades can be added to an HP 1660E Series logic analyzer at a later date if the additional functionality is desired.

HP E2460ES	Upgrade to add two-channel, 500-MHz bandwidth, 2-GSa/s, 32k memory oscilloscope to an HP 1660E Series model
HP E2495A	Upgrade to add thirty-two channel, 100 MVectors/sec, 256k memory pattern generator to an HP 1660E Series model

Replacement Part Numbers for Logic Analyzer Probes

HP 5959-9333	Five gray probe leads	
HP 5959-9334	Five short ground leads	
HP 01650-61608	16-Channel probe lead set	
HP 5090-4356	Surface-mount grabbers (package of 20)	
HP 5959-0288	Throughhole grabbers (package of 20)	

Replacement Model Numbers for Pattern Generator Probing

As a convenience, the individual model numbers for the HP 1660EP series pattern generator clock/data pods and lead sets are listed here. Normally these are ordered as product options at the time of purchase. They are listed here for any future needs that may arise.

HP 10460A	O460A TTL Clock Pod for the HP 1660EP-Series	
HP 10461A	8-channel TTL Data Pod for the HP 1660EP-Series	
HP 10462A	8-channel 3-state TTL/CMOS Data Pod for the HP 1660EP-Series	
HP 10463A	ECL Clock Pod for the HP 1660EP-Series	
HP 10464A	8-channel ECL (terminated) Data Pod for the HP 1660EP-Series	
HP 10465A	8-channel ECL (unterminated) Data Pod for the HP 1660EP-Series (use HP 10347A lead set)	
HP 10466A	8-channel 3-state TTL/3.3V Data Pod for the HP 1660EP-Series	
HP 10474A	8-channel Probe Lead Set for the HP 1660EP-Series	
HP 10347A 8-channel (50-ohm Coaxial) Probe Lead Set		

Related HP Literature

Title	Publication Description	HP Pub. Number
Logic Analysis and Emulation Solutions Version 3.0	CD-Rom	5965-7502E
Processor and Bus Support for HP Logic Analyzers	Configuration Guide	5966-4365E

Warranty Information

All Hewlett-Packard products described in this document are warranted against defects in material and workmanship for a period of one year from date of shipment. Three-year and five-year return-to-HP repair services are also available. Refer to individual product manuals for detailed descriptions and terms of warranty. As an added benefit to HP 1664A customers, this product comes standard with a three-year return to HP warranty.

 $Postscript^{TM} \ is \ a \ trademark \ of \ Adobe \ Systems \ Incorporated.$

For more information about Hewlett-Packard test and measurement products, applications and services, visit our web site: http://www.hp.com/go/tmdir. For more information on HP 1660 and 1670E-Series benchtop logic analyzers, visit our website: http://www.hp.com/go/benchtopLA. You can also contact one of the following centers and ask for a test and measurement sales representative. If you

plan to purchase a new logic analyzer

budget approved for the purchase, HP can arrange for you to test drive a unit.

within the next 3 months and have

United States:

Hewlett-Packard Company Test and Measurement Call Center P.O. Box 4026 Englewood, CO 80155-4026 1 800 452 4844

Canada:

Hewlett-Packard Canada Ltd. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 (905) 206 4725

Europe:

Hewlett-Packard European Marketing Centre P.O. Box 999 1180 AZ Amstelveen The Netherlands (31 20) 547 9900

Japan:

Hewlett-Packard Japan Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192-8510, Japan (81) 426 56 7832

Latin America:

Hewlett-Packard Latin American Region Headquarters 5200 Blue Lagoon Drive 9th Floor Miami, Florida 33126 U.S.A. (305) 267 4245/4220

Australia/New Zealand:

Hewlett-Packard Australia Ltd. 31-41 Joseph Street Blackburn, Victoria 3130 Australia 1 800 629 485 (Australia) 0 800 738 378 (New Zealand)

Asia Pacific:

Hewlett-Packard Asia Pacific Ltd 17-21/F Shell Tower, Times Square, 1 Matheson Street, Causeway Bay, Hong Kong (852) 2599 7777

Technical information in this document is subject to change without notice.

5968-0327E Printed in the U.S.A. 11/98